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I. INTRODUCTION AND BASIC EQUATIONS

Adiabatic shear banding is a localization phenomenon that occurs dur-
ing high rate plastic deformation in many materials. Since the heat gener-
ated by plastic flow usually tends to lower the flow stress, the response
curve for adiabatic homogeneous deformation will fall below the isothermal
response. If this thermal softening is stronger than both work and rate
hardening together, then eventually a peak stress occurs at a critical
value of strain, followed by decreasing stress for further increments of
3train. Such a situation is generally unstable and presents an opportunity
for strain localization to occur. In recent years there has been consider-
able interest in developing a quantitative, dynamical theory of adiabatic
shear banding. Much of the recent literature, as well as some of the
pioneering works have been listed and discussed briefly by Clifton, et al.
In this paper we present further calculations of the kind given previously
by Wright and Batra,? 1In particular, we show the effect of changing the
constitutive rate response and the magnitude of the perturbation. We also
examine the effect of adding a gradient or dipolar response to the consti-
tutive equations, at least for early times.

In order to concentrate on fundamentals, consider one-dimensional
shearing of a block of material that lies between the boundaries § = +h.
The deformation is assumed to be given completely by horizontal shearing.
Thus the velocity field may be written

x = viy,t); y=0; 7 =0. (1)

As used in Reference 2, the balance and constitutive laws for this
case are given here in nondimensional form.

Momentum: S»y = oV
: o = k6,,, * S
Energy: 8 =k vy Yy
Elastic Response: $ = U(V,y - Yp)
b \n (2)
Reference Plastic Response: x = (1 + 6—0
o
Work Hardening: Wp =k = S§p
. M
Yield Surface: [s] = (1 - ae)(1 + b(Yp‘) K

Boundary conditions are v(+1,t) = *1, 8,y(i1,t) = 0. 1In these equations

the shear stress is s, mass density is p} particle velocity is v, pempera-
ture rise is A, thermal conductivity is k, plastic strain rate is Y _, shear
modulus is ., work hardening parameter is x, and plastic strain in a refer-

ence test is ¢y, The comma denotes partial differentiation with respect to




:s the spatial coordinate y, and the superimposed dot denotes partial differ-
] entiation with respect to time t. 1In the energy equation plastic working
acts as a source term. A linear elastic response is assumed as well as the
additive decomposition of shear strain into elastic and plastic parts. The

reference plastic response is intended to be simply a curve fit to a slow
isothermal test. The work hardening parameter is assumed to depend only on
the plastic work no matter what the rate of the test. Finally, the yield
surface is taken to depend on plastic strain rate, as well as stress and
temperature. When (2)6 is solved for Qp as a function of s, 6, and k, this

2”35 570 "0 A

last condition is seen to be simply an overstress rule for plastic flow
when the stress-temperature point lies outside the static yield surface.
The form chosen here is similar to one due to Litonski.3 Note that the
thermal softening depends only linearly on temperature.

l' ]

el

»

In Reference 2 the nondimensional variables and parameters are related
to their dimensional (barred) counterparts as follows:

ty

=y = v/ {h+ = s = {85c )/
y=yh t "“’/(’”o) s =5s/k, O (féocv),m0

0

b=3 o= (ah25 0k, k= K/ (Beyih?)

.<=E/u<

"
<

o

w=ilkg = (3kg)/(oc,) b = by

RANPUTREREAAC o

where y = v(h,t)/h is the average applied strain rate between y = th, Ko
is the initial yield stress in the reference test, e, is the specific heat

- at constant volume, and i, b, wo, m, and n are material constants.

; II. HOMOGENEQOUS SOLUTIONS AND PERTURBATIONS

X If we set v = y and assume that s, 6, and ¥ are independent of y, then
equations (2) reduce to a set of ordinary differential equations in time
with s, 6, and « as dependent variables. For initial conditions we assume
s(0) = 1, 8(0) = 0, and x(0) = 1, so that yielding begins at the initial
time. For the assumed visco/plastic flow law, the stress/strain response
is a smooth curve, which rises at the elastic slope initially and then, as
plastic flow increases and the temperature rises, the curve bends over,
passes through a single maximum, and finally decreases with further

. increments of strain. This type of calculated behavior is well known in

" the literature, e.g. see References U4, 5, 6, and 7. Figure 1 shows typical
X results. For curve A, the nondimensional parameters are

3.928 x 10_5, kK = 3.978 x 10'3, a

>, n = 0.09, wo = 0.017, b=5x 106, m = 0.025

Q
A

v P 0.4973, u = 240.3

and for curve B all the numbers are the same except b = § x 105 and

m = 0.02. Also shown in the figure are the reference stress/strain curve
. (a = 0, b =0) and the isothermal response (a = 0) corresponding to A (case
. B is similar).
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Perturbations to the homogeneocus response have been introduced in the
following manner. Just prior to the occurrence of peak stress, the temper-
ature was modified by adding a symmetric bump at the center, Two cases
have been considered as shown in Figure 2, the larger perturbation being
five times higher and broader than the smaller one, but similar in shape.
With the new temperature distribution given, the stress was recalculated so
that (2)6 i1s still satisfied, all other variables being held fixed. Then

the full problem using all of (2) and the stated boundary conditions was
restarted with the new field variables as initial data. After casting the
equations into weak form, calculations were made using the finite element
method, e.g. see Becker, et al.3

Case B with the smaller temperature bump as a perturbation was previ-
ously described in some detail in Reference 2. Figures 3 through 7 illus-
trate and compare the main features of the response for all cases consid-
ered to date. Because of the constant velocity maintained at the bound-

aries, average strailn rate in the scaled variables for the strip ?ave is

exactly equal to one, This fact allows direct comparisons between the
homogeneous and inhomogeneous cases. Figure 3 shows the stress at the
center of the strip as a function of average strain (or time). The pertur-
bation was added at the point marked I, and the peak of the homogeneous
response is marked P. For the small temperature bump the stress follows
the homogeneous response until well past the point P, and then drops
rapidly as the shear band accelerates and localizes. The stress at other
points of the strip is nearly the same, but lags slightly in time. Note

that in real time {for ?0 = 500 8-1, say) the stress collapse is delayed

approximately 125 us past peak stress P, and the rapid acceleration itself
takes more than 20 us. This behavior is entirely similar for both cases A
and B. The case of the larger temperature perturbation contrasts sharply.
In this case the stress collapse begins even before point P.

Figures 4 and 5 show the evolution of temperature and plastic strain
rate at the center and edge of the band in comparison to the homogeneous
case. As is to be expected, the behavior parallels the stress response.
At first the temperature and strain rate deviate slowly from the homogene-
ous response, but when the stress collapses, they both rise steeply in the
center, At the edge, the temperature levels off to a plateau while the
plastic strain rate (not shown for the edge position) drops towards zero.
At first it appears that the temperature and plastic strain rate change so
as to compensate each other without appreciably affecting the stress
response, but eventually thermal softening wins out in the center., At the
edge the stress drops due to momentum transfer from the center and effec-
tively quenches both the temperature rise and the plastic deformation.

Figures 6 and 7 show cross sections of temperature and plastic strain
rate for case A (with the larger temperature perturbation) at several times
during the rapid transition. The most notable feature here is the narrow-
ing of the most active region of deformation. This is particularly evident
in the cross sections of plastic strain rate. Note that for the latest
time the plastic strain rate in the center of the band is nearly 80 times
the average applied strain rate.
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III. MODIFICATIONS FOR A DIPQOLAR EFFECT

As a shear band forms, it is evident that very steep local strain
gradients must develop. Therefore, it has seemed worthwhile to reformulate
the problem in terms of a dipolar theory of plasticity. This has been
accomplished in a straight forward manner by modifying the theory due to
Green, McInnis, and Naghdi~” to include a rate effect. In a dipolar mater-
ial it is assumed that, in addition to the usual traction forces that do
work against velocities, there are hypertractions, denoted G and having the
dimensions of stress times length, that do work against velocity gradients.
Decomposition of strain gradients into elastic and plastic parts introduces

a new internal variable, denoted dp in this paper, which requires its own

evolutionary constitutive equation. As shown in Reference 9, dipolar plas-
ticity introduces lenzth scales that are characteristic of the material
itself. 1In this paper, it is supposed that there is only one intrinsic
length scale for elastic, plastic, or viscoplastic deformation, which is
denoted £. In addition to the nondimensional qQuantities introduced previ-
ously, we require

o= B/EKO, 2= 2/h .

The full set of equations with a Von Mises type flow condition now
takes the form

Momentum: (s - lo’y)’y = oV

Energy: 0 = kouyy * SYp +za&p

Constitutive Equations:

S = sy =Y ’ Y. = A
5= wulvay - vp) ¥ s

(3)

Q-
1]

- d i = A
Qu(v,yy dp) . d 7 O -

Reference Response and Work Hardening:

- n W - y —-— Y y
= + 1] . = = +9
K (1 wo) Np Ky SYp odp

Yield condition:
(s2 + 02)1/2 = (1 - a9){(1 + b/\(s2 + 02)1/2)m K .

In these equations A plays the role of a plastic multiplier and is to be
determined from the yield condition when the loading point (s, o, 0) lies
outside the static yleld surface, as determined by the last equation with
A set equal to zero. Extra boundary conditions are also required. These
are chosen to be o (+1,t) = 0, so that the dipolar effect will effectively
vanish outside the shear band.
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Homogeneous solutions to these equations are exactly the same as
before, but now the response to perturbations, computed for case B with the
smaller temperature bump, appears to be quite different, although long com~
putational run times have not yet been achieved. Figure 8 shows the evolu-
tion of the central plastic strain rate for a nondimensional intrinsic

length 2 = 10'2. The rate decays rapidly back toward the average applied

rate, at least for short times after introduction of the perturbation, so
that the dipolar effect appears to stabilize the deformation.

IV. DISCUSSION AND CONCLUSIONS

The response to the small temperature perturbation i3 qualitatively
very similar for both cases A and B. Figure 3 shows that, although the
stress levels are different due to the different viscous response, the
shapes of the homogeneous response curves are similar, and so are the
shapes of the response to perturbation. For something on the order of 5 or
6% average strain past the peak of the homogeneous curve the stress path
deviates only slightly until stress collapse sets in at the end of the cal-
culation. Similar behavior was reported by Merzer® who used a completely
different flow law for viscoplasticity. Thus, it appears that stress col-
lapse is inherent in the process of band formation with the details depend-
ing on the specific material model used.

The calculation with the larger perturbation in temperature for case A
shows that the details of stress collapse also depend strongly on the mag-
nitude of the perturbation, Although case B has not been run with the
larger temperature disturbance, there is no reason to expect that the
results would be qualitatively different from case A.

The most striking aspect of the response patterns in Figure 3 is their
similarity to those obtained in analyzing imperfection sensitivity for a
bifurcation problem, e.g., see Reference 10. The only thing missing is
the bifurcation branch itself. Figures 4 and 5 for temperature and plastic
strain rate reinforce this idea.

Although calculations for the dipolar case have not yet progressed far
enough to be definitive, it appears that the effect, even for a very small
inherent material length scale, will be highly stabilizing. This would be
in accordance with the experience to date for elastic systems where, as in
Reference 11, higher order effects allow smooth transitions instead of dis-
continuities.

Unfortunately, because of computational instabilities that set in, it
has not yet been possible to continue calculations to the point where a
final configuration for the shear band appears. The calculations reported
in Reference 2 indicated that a peak value for plastic strain rate may
occur, but reexamination has indicated numerical instability. The diffi-
culty seems to be that eventually the extreme localization of the band
defeats the ability of the present numerical method to resolve the details.
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